Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718610

RESUMO

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/genética , Malato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Glicemia/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Humanos , Hiperglicemia/sangue , Insulina/análise , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
2.
Mol Cell Endocrinol ; 522: 111126, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321115

RESUMO

Diabetes is a genetically heterogeneous disease, for which we are aiming to identify causative genes. Here, we report a missense mutation (c.T1424C:p.L475P) in ZYG11A identified by exome sequencing as segregating with hyperglycemia in a Thai family with autosomal dominant diabetes. ZYG11A functions as a target recruitment subunit of an E3 ubiquitin ligase complex that plays an important role in the regulation of cell cycle. We demonstrate an increase in cells arrested at G2/mitotic phase among beta-cells deficient for ZYG11A or overexpressing L475P-ZYG11A, which is associated with a decreased growth rate. This is the first evidence linking a ZYG11A mutation to hyperglycemia, and suggesting ZYG11A as a cell cycle regulator required for beta-cell growth. Since most family members were either overweight or obese, but only mutation carriers developed hyperglycemia, our data also suggests the ZYG11A mutation as a genetic factor predisposing obese individuals to beta-cell failure in maintenance of glucose homeostasis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Diabetes Mellitus/genética , Genes Dominantes , Células Secretoras de Insulina/patologia , Mutação/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proliferação de Células/genética , Segregação de Cromossomos/genética , Exoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Moleculares , Linhagem
3.
Biochem Biophys Res Commun ; 529(3): 826-833, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32684311

RESUMO

Maturity-onset diabetes of the young type 3 (MODY3) is caused by mutations in a gene encoding transcription factor hepatocyte nuclear factor 1-alpha (HNF1A). Although the roles of HNF1A in regulation of hepatic and pancreatic genes to maintain glucose homeostasis were investigated, the functions of HNF1A are not completely elucidated. To better understand the functions of HNF1A, we characterized mutations of HNF1A in Thai MODY3 patients and studied the functions of wild-type HNF1A and variant proteins. We demonstrate for the first time that HNF1A upregulates transactivation of an anti-apoptotic gene BCL2 Like 1 (BCL2L1) and that all the identified HNF1A variants including p.D80V, p.R203C, p.P475L, and p.G554fsX556, reduce this ability. The four HNF1A variants impair HNF1A function in promoting INS-1 cell transition from G1 to S phase of cell cycle, which thereby retard cell growth. This finding indicates the role of HNF1A in beta-cell viability by upregulation of anti-apoptotic gene expression and also reaffirms its role in beta-cell growth through cell cycle control.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Células Secretoras de Insulina/citologia , Ativação Transcricional , Proteína bcl-X/genética , Adulto , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Feminino , Células HeLa , Fator 1-alfa Nuclear de Hepatócito/química , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Alinhamento de Sequência
4.
Neurotoxicology ; 67: 287-295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944913

RESUMO

Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression.


Assuntos
Calcineurina/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Ciclo-Oxigenase 2/metabolismo , Metanfetamina/toxicidade , Fatores de Transcrição NFATC/metabolismo , Neuroblastoma/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Estimulantes do Sistema Nervoso Central/toxicidade , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Neuroblastoma/genética
5.
Mitochondrion ; 30: 151-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453331

RESUMO

Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Morte Celular , Expressão Gênica , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Calcineurina/metabolismo , Calpaína/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/toxicidade , Dinâmica Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...